IDAHO AVIATION ACCIDENT SCORE CARD (IAASC)

Prepared by the Idaho Division of Aeronautics, Safety and Education Department

April 2019
INTRODUCTION

The mission of the Idaho Division of Aeronautics is to promote and foster aviation within the state of Idaho. The Safety/Education unit of the Division supports this mission by providing relevant, high-quality safety information, and education programs for the benefit of our stakeholders.

General aviation (GA) flying in Idaho can be challenging. Statistics indicate Idaho has traditionally experienced a higher per capita accident rate than neighboring states. While we have seen our rates decline over the last five years, we had a slight increase in this reporting period and it follows the national aviation accident rate trend.

We continue to challenge our aviation community to maintain their proficiency and continue to learn while providing airport standard operating procedures, welcome packets for visiting pilots, fly-in safety briefings, AOPA safety seminars sponsored by the Division of Aeronautics, and our annual Safety Standdown event.

This 2019 Idaho Aviation Accident Score Card (IAASC) provides details on all Idaho aircraft accidents that occurred from January 1 to December 31, 2017, and is compiled directly from the NTSB database.

The IAASC includes: yearly comparisons and summaries, total number of GA accidents, fatal accidents, fatalities, pilot qualifications, and class of aircraft. In addition, the IAASC provides an overview of Idaho aviation trends although final reports of these accidents are on-going by the NTSB. It is published annually during the first quarter and analyzes accidents from two years prior.

IAASC information will be discussed during safety and education meetings, and presented to the Division of Aeronautics Advisory Board as well as Idaho flight training organizations.

Maintaining proficiency and continuous learning will help to keep you safe. But maintaining proficiency is just the minimum, choosing to improve your flying skills is like engaging in a good fitness program for your health. It is good for you and the general aviation community. No one says you can’t do biennial flight reviews more frequently. When you look at the military or commercial aviation, the pilots are constantly training and improving their craft. There is no reason why we, as general aviation pilots can’t do the same. Understanding your capabilities and limitations can guide your training.

Safety is a choice and the pilots who choose to be safe by improving their flying skills and avoiding risky flight operations, tend to have an above-average safety record. The Division of Aeronautics continues to encourage pilots to train, improve their flying skills, practice risk mitigation and remain proficient. The Division of Aeronautics is here to provide information and training events to assist you in becoming a better and safer pilot.

General Aviation, for the purposes of this report, excludes flight activity performed by the uniformed armed services and scheduled airlines. Furthermore, turbine-engines, gliders, weight-shift control aircraft, powered parachutes, gyrocopters, lighter-than-air, and aircraft with maximum takeoff weights greater than 12,500 pounds are also excluded. Please note, however, this report does include flight instruction, agricultural, public-benefit missions such as fire suppression and law enforcement, cargo, and passenger charter operations.
ACCIDENT STATISTICS

Comparison between 2016 and 2017

- Aircraft accidents increased from 22 in 2016 to 29 in 2017
- Fatalities resulting from aircraft accidents increased from 1 in 2016 to 3 in 2017
- Fatal Accidents increased from 1 in 2016 to 3 in 2017

Summary of 2017

- Sixty seven percent of the total accidents and fatalities in 2017 involved out-of-state registered aircraft and pilots.
- Fifty two percent of all aviation accidents occurred at airports with paved-surface runways, while 31% occurred at or within close proximity to those designated as backcountry or wilderness airstrips. Fourteen percent of Idaho’s aviation accidents occurred away from the vicinity of airports.
- No fatalities occurred at airports with paved surface runways. Two of the fatalities occurred at or within close proximity to those designated as backcountry or wilderness airstrips and the third fatality occurred while the pilot was flying aerobatics.
- Eighty nine percent of the total accidents in 2017 have been categorized as “pilot related/error” by the NTSB. Seven percent are categorized as “mechanical/maintenance” accidents. Three percent were categorized as “Unknown.”
- In Idaho in 2017, aviation accidents occurred in every month. Sixty five percent of the total accidents occurred during the months of May and Aug.
- Fatal accidents occurred in June, September and November.
- One of the fatal accidents occurred by a pilot who recently purchased a tailwheel aircraft with no backcountry experience, flew into the backcountry and entered a box canyon, stalling on an attempted course reversal.
- Two of the three fatal accidents occurred in homebuilt aircraft.
- The number of GA accidents occurring in neighboring states from highest to lowest compared to Idaho’s 29 accidents:
 - Washington: 37
 - Idaho: 29
 - Nevada: 28
 - Oregon: 26
 - Utah: 25
 - Montana: 11
 - Wyoming: 11
GENERAL AVIATION ACCIDENTS IN IDAHO

In 2017 there were 29 general aviation accidents in Idaho with three fatalities in three fatal accidents. A 66% increase in accidents from the previous year and a 66% increase in fatalities. The majority of non-fatal accidents were private pilots flying single-engine fixed-wing tailwheel aircraft in the backcountry.

Percentages are based only on those accident investigations that are complete and assigned a “Probable Cause” by the NTSB.

GA ACCIDENTS IN 2017

<table>
<thead>
<tr>
<th>Non-Commercial Fixed Wing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Accidents</td>
</tr>
<tr>
<td>Fatal Accidents</td>
</tr>
<tr>
<td>Fatalities</td>
</tr>
</tbody>
</table>

2012-2017 Accident Summary

Idaho had 2.9% of the nation’s non-commercial fixed-wing accidents in 2017
The causes of Idaho accidents in 2017 fell into three categories for analysis:

- Pilot Related – accidents occurring from the improper actions or inactions of the pilot.
- Mechanical – accidents occurring from mechanical failure.
- Other/Unknown – i.e. pilot incapacitation and accidents with an undetermined cause according to the NTSB.

Accident Phase of Flight Idaho vs. Nationwide

<table>
<thead>
<tr>
<th>Phase of Flight</th>
<th>Idaho</th>
<th>Nationwide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing</td>
<td>57%</td>
<td>37%</td>
</tr>
<tr>
<td>Take-off/Climb</td>
<td>25%</td>
<td>15%</td>
</tr>
<tr>
<td>Maneuvering</td>
<td>14%</td>
<td>6%</td>
</tr>
<tr>
<td>Approach/Descent</td>
<td>4%</td>
<td>6%</td>
</tr>
<tr>
<td>Other Pilot-Related</td>
<td>0%</td>
<td>20%</td>
</tr>
<tr>
<td>Fuel Management</td>
<td>0%</td>
<td>11%</td>
</tr>
<tr>
<td>Weather</td>
<td>0%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Landing continues to be the leading accident phase at 57% in Idaho as well as the nation, while take-off/climb and other pilot-related phases are the second leading phase of accidents across the board. These are the most critical phases of flight and with training, practice and maintaining of proficiency, pilots can reduce their risk of accident, injury or even fatality. **Do you practice to improve your landings?**
This is why the concept of maintaining a “sterile cockpit” was developed. During these critical phases of flight, the pilot needs to be focused on the task at hand and all communications need to be focused on these tasks. You should brief your passengers to maintain a “sterile cockpit” to avoid distracting the pilot, and possibly contributing to an accident during these critical phases of flight. If you are not following a “sterile cockpit” policy, you should consider developing and briefing one whenever you fly and especially when flying with passengers.

To be the safest pilot you can be, it is important for you to maintain proficiency and continue to learn your craft. When you fly, have a plan. What do you want to accomplish? You should know your strengths and weaknesses. Consider doing something each flight to improve in your areas of weakness. Always focus and fly to the highest standards that you have set for yourself and don’t be afraid to ask a CFI for additional instruction. As a general aviation pilot, you are a reflection to the local community of general aviation. You are an ambassador of aviation to the local community. Please accept that responsibility and be the best pilot that you can be.

Year-to-Year Comparison 2016 vs 2017

Statistics continue to reflect that the landing phase is the most accident-prone phase of flight as we saw an increase in accidents from the previous year. *With that in mind, are you practicing your landings? Are you using the “stable approach” concept?*
The concept of the “stable approach” came about as a way to help mitigate the risk of landing. How often do we try to save a botched approach? Just as in personal minimums, you should define, in advance, what your “stable approach” looks like, and if you don’t meet your own standard, the choice of a go-around has been pre-decided. As an example, if you roll out on final and you are not on centerline, not on speed ± 5 knots at 300’ then you will go around. How would you define your “stable approach” and are you disciplined enough to abide by your own standards? These are concepts when employed, can greatly reduce the possibility of an accident.

Idaho has a higher than average accident rate in the landing phase and what we see in the analysis of the data is that the majority of these accidents are in the backcountry or on unpaved airfields. While landing in the backcountry can be fun, it is also more complex and can be extremely challenging for pilots, especially when they haven’t had the proper training to fly there. Our backcountry also attracts pilots from other states who often have not flown in higher density altitudes and don’t realize the devastating effect it can have on aircraft performance. Be wise. Continue to practice and train and, please, get with a CFI if you are trying to do something you’ve never done before, especially if you are flying in the backcountry for the first time or if you haven’t done it in a little while.

Non-Commercial Fixed Wing Accidents

The number of non-commercial fixed-wing accidents increased from 19 in 2016 to 28 in 2017, fatalities also increased from one in 2016 to three in 2017. In 2017, three accidents accounted for three fatalities.
Flight Conditions

All accidents in 2017 occurred with weather above VFR minima.

Pilot Qualification Idaho vs Nationwide

<table>
<thead>
<tr>
<th>Pilot Qualification</th>
<th>Idaho</th>
<th>Nationwide</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>3</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>11%</td>
<td>13%</td>
</tr>
<tr>
<td>Commercial</td>
<td>6</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>21%</td>
<td>27%</td>
</tr>
<tr>
<td>Private</td>
<td>17</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>61%</td>
<td>49%</td>
</tr>
<tr>
<td>Sport</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>3%</td>
</tr>
<tr>
<td>Recreational</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Student</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>4%</td>
<td>7%</td>
</tr>
<tr>
<td>Other/Unknown</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Pilot Qualifications, Experience & Age

Nationally, 49% percent of all fatal and non-fatal accidents were commanded by private pilots. Private pilots where involved in 385% more fatal accidents than those commanded by an Airline Transport Pilot (ATP).

In Idaho, 61% of accidents were commanded by Private pilots, 21% were Commercial pilots and 11% were ATP. The accidents decrease as the certification level goes up. The one consistent statistic is that Student pilots are normally in the lowest category as they are frequently the most proficient and focused pilots under the watchful eye of a CFI. Compared to the nationwide statistics, Idaho’s Private pilots had a higher percentage of accidents, but ATP, Commercial and Student were below the national average.

The majority of accidents occurred with pilots who had logged between 501-1000 hours followed by those who had logged between 250-500 hours and/or less than 250 hours. There were still accidents above 1000 hours and in every category but they did not occur as often.

Over 61% of accidents were commanded by pilots over the age of 50 and the majority of the accidents were commanded by pilots between the age of 61 and 70. The average age of the general aviation pilot is 52.

Tailwheel aircraft were involved in 54% of all accidents and 27% of the tailwheel aircraft involved in accidents were homebuilt.

There was one helicopter accident and one accident involving a non-commercial multi-engine aircraft.
Pilot Rating vs Accidents

- Private pilots account for 61% of the accidents

![Pilot Rating Chart]

Pilot Flight Time vs Accidents

- Pilots with less than 1,000 hours were involved in a majority of the accidents

![Pilot Flight Time Chart]
Pilot Age vs Accidents

- Pilots over the age of 61 years old account for 57% of the accidents
- No accidents by pilots in the 41-50 year old category
- The average age of general aviation pilots is 52

Aircraft Class vs Accidents

- Tailwheel aircraft accounted for 54% of the accidents
Experimental/Homebuilt and Certified Aircraft vs Accidents

- Fourteen percent of the aircraft accidents involved Experimental/Homebuilt aircraft.

![Graph showing the comparison between Experimental/Homebuilt and Certified aircraft.]

Experimental/Homebuilt and Tailwheel Aircraft vs Accidents

- Twenty seven percent of the Tailwheel accidents were Experimental/Homebuilt.

![Graph showing the comparison between Experimental/Homebuilt and Tailwheel aircraft.]
Accident Pilot Profile Summary

The statistics point to an out-of-state private pilot with less than 1000 hours, between the ages of 61-70, flying a certified, single-engine fixed-wing aircraft, with tail-wheel landing gear, occurring during the landing phase in VFR conditions at a backcountry airstrip and caused by pilot error.

Accident Rate Methodology

We calculated the GA accident rate based on total 100LL fuel purchased in the state of Idaho for the analysis year. Then using a fuel burn rate of 14.2 gallons per hour, we divided total gallons by 14.2 to give total flight hours flown for the analysis year. Then we took the number of accidents and number of fatalities and divided it by total hours flown and determined the equivalent rate per 100,000 hours flown.

Accident Rates

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Accidents per 100,000 flt hrs</th>
<th>Fatalities per 100,000 flt hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>27.4</td>
<td>6.2</td>
</tr>
<tr>
<td>2015</td>
<td>23.1</td>
<td>7.7</td>
</tr>
<tr>
<td>2016</td>
<td>20.8</td>
<td>0.9</td>
</tr>
<tr>
<td>2017</td>
<td>27.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

After a couple years of trending downward, the general aviation accident rate bumped back up, but the fatalities didn’t go up as much.

While the accident rate bumped up in Idaho for 2017, it was the safest year on record for large commercial passenger air travel with zero deaths. In 2017 it is estimated that the fatal accident rate for large commercial passenger flights is 0.06 per million flights, or one fatal accident for every 16 million flights.

Trends

This IAAASC data shows that the majority of Idaho accidents occurred as a result of pilot error accounting for 89% of all accidents with 67% of the pilots coming from another state and flying in the backcountry in tailwheel aircraft. We have noted an increase in accidents occurring during the landing phases of flight from 41% to 57%. Tailwheel accidents have increase from 44% to 54%. The accident rate and fatality rate also rose slightly after a couple years in decline, and this is in line with national trends.
Focus for 2019

Our focus this year is on proficiency and getting back in the saddle with an emphasis on backcountry flying. We will be sponsoring numerous AOPA Safety Seminars. This year’s seminar is called Peaks to Pavement and shares good backcountry flying techniques that you can use in a paved environment. In addition, we will be sponsoring a backcountry ground school and giving certificates to pilots who do both the ground school and complete a backcountry checkout with a CFI. We also look forward to seeing you at our annual Safety Standdown. This year the CFI Roundtable will be on Oct 18th and the Safety Standdown will be on Oct 19th.

Resources

Please follow us on Facebook at https://www.facebook.com/idahoaeronautics/
You can also find us on our webpage at https://itd.idaho.gov/aero/
For visiting pilots you will find the “Welcome to Flying Idaho” publication at: http://tinyurl.com/flyingidaho

On our webpage is information on how to register your aircraft, ACE Academy, Art Contest, and you can join our e-mail list for updates. We have Standard Operating Procedures available for the following backcountry airstrips:

- Big Creek http://tinyurl.com/aero-bigcreek
- Cavanaugh Bay http://tinyurl.com/aero-cavanaughbay
- Garden Valley http://tinyurl.com/aero-gardenvalley
- Johnson Creek http://tinyurl.com/aero-johnsoncreek
- Smiley Creek http://tinyurl.com/aero-smiley creek
- Stanley http://tinyurl.com/aero-stanley

You can also sign up for the Rudder Flutter Newsletter or view recent and past editions online.

We can only provide materials and support in your journey to become a safer pilot. It is up to you to take advantage of what we offer and to engage in your own success and proficiency.

If you plan on flying in the backcountry, please get training as the backcountry flying is very unforgiving. When flying in the backcountry, calculate your density altitude prior to your flight and understand how your performance will be affected. You can use an online Interactive Koch Chart to determine your density altitude at: https://www.takeofflanding.com/

The Idaho Aviation Association has a listing of Instructors qualified to teach backcountry and tailwheel flying. You can find them online at: https://idahoaviation.com/instructors
Case Study: GAA17CA202

Let’s take a look at one of the year’s accidents and see what we can learn. This accident involved an experienced pilot, flying in the backcountry in a rented aircraft. While the aircraft was a total loss, the pilot and occupant made it out alive.

National Transportation Safety Board
Aviation Accident Final Report

<table>
<thead>
<tr>
<th>Location:</th>
<th>Mackay, ID</th>
<th>Accident Number:</th>
<th>GAA17CA202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date & Time:</td>
<td>03/25/2017, 1400 MDT</td>
<td>Aircraft Damage:</td>
<td>Substantial</td>
</tr>
<tr>
<td>Aircraft:</td>
<td>CESSNA 182</td>
<td>Injuries:</td>
<td>2 Minor</td>
</tr>
<tr>
<td>Defining Event:</td>
<td>Loss of lift</td>
<td>Flight Conducted Under:</td>
<td>Part 91: General Aviation - Personal</td>
</tr>
<tr>
<td>Flight Conducted Under:</td>
<td>Part 91: General Aviation - Personal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis

The pilot reported that, while flying in mountainous terrain around 9,500 ft mean sea level (700 to 1,200 ft above the ground), the airplane encountered a downdraft. He added that he immediately turned away from the mountainside in a right turn, added full power, selected 10º of flaps, and pitched the nose up to maintain the airplane’s maximum angle-of-climb airspeed (Vx). Subsequently, the airplane was unable to climb, and it then impacted wooded, snow-covered terrain along the mountainside. The fuselage and both wings sustained substantial damage.

The pilot reported that there were no pre-accident mechanical malfunctions or failures with the airplane that would have precluded normal operation. The calculated density altitude near the flightpath was about 10,339 ft. According to the Federal Aviation Administration Koch Chart, the airplane would have experienced a 50% decrease to the normal climb rate. The high density altitude conditions likely contributed to the airplane’s inability to establish a climb.

Probable Cause and Findings

The National Transportation Safety Board determines the probable cause(s) of this accident to be:

The pilot’s decision to maneuver the airplane over mountainous terrain in high-density altitude conditions, which resulted in the airplane’s inability to maintain altitude or establish a climb.
Findings

Aircraft
- Climb capability - Capability exceeded (Cause)
- Altitude - Attain/maintain not possible (Cause)

Personnel issues
- Decision making/judgment - Pilot (Cause)

Environmental issues
- High density altitude - Effect on operation
- Mountainous/hilly terrain - Decision related to condition
- High elevation - Decision related to condition

Factual Information

History of Flight

Maneuvering-low-alt flying
- Other weather encounter
- Loss of lift (Defining event)
- Loss of control in flight
- Attempted remediation/recovery
- Collision with terr/obj (non-CFIT)

Pilot Information

Certificate:
- Flight Instructor; Commercial
- Age: 37, Male

Airplane Rating(s):
- Multi-engine Land; Single-engine Land
- Seat Occupied: Left

Other Aircraft Rating(s):
- None
- Restraint Used: 5-point

Instrument Rating(s):
- Airplane
- Second Pilot Present: No

Instructor Rating(s):
- Airplane Multi-engine; Airplane Single-engine
- Toxicology Performed: No

Medical Certification:
- Class 2 Without Waivers/Limitations
- Last FAA Medical Exam: 04/04/2016

Occupational Pilot:
- Yes
- Last Flight Review or Equivalent: 03/24/2017

Flight Time:
- (Estimated) 1689 hours (Total, all aircraft), 76 hours (Total, this make and model), 1526 hours pilot in command, all 124 hours (Last 90 days, all aircraft), 47 hours (Last 30 days, all aircraft)

Conditions at Accident Site:
- Visual Conditions
- Condition of Light: Day

Observation Facility, Elevation:
- KSUN, 5320 ft msl
- Distance from Accident Site: 32 Nautical Miles

Observation Time:
- 1958 UTC
- Direction from Accident Site: 222°

Lowest Cloud Condition:
- Scattered / 6000 ft agl
- Visibility: 10 Miles

Altimeter Setting:
- 30 inches Hg

Temperature/Dew Point:
- 7°C / 1°C

Precipitation and Obscuration:
- No Obscuration; No Precipitation

Departure Point:
- NAMPA, ID (MAN)

Destination:
- NAMPA, ID (MAN)

Departure Time:
- 1220 MDT

Type of Flight Plan Filed:
- None

Type of Clearance:
- VFR; VFR Flight Following

Type of Airspace:
- Class G
Wreckage and Impact Information

<table>
<thead>
<tr>
<th>Crew Injuries:</th>
<th>1 Minor</th>
<th>Aircraft Damage:</th>
<th>Substantial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Injuries:</td>
<td>1 Minor</td>
<td>Aircraft Fire:</td>
<td>None</td>
</tr>
<tr>
<td>Ground Injuries:</td>
<td>N/A</td>
<td>Aircraft Explosion:</td>
<td>None</td>
</tr>
<tr>
<td>Total Injuries:</td>
<td>2 Minor</td>
<td>Latitude, Longitude:</td>
<td>43.846944, -113.684722 (est)</td>
</tr>
</tbody>
</table>

Preventing Similar Accidents
Mastering Mountain Flying

Pilots with limited or no training in mountain flying can be surprised about their aircraft’s different performance at high density altitude, often leading to serious or fatal accidents. Wind and other weather phenomena interacting with mountainous terrain often lead unsuspecting pilots into situations that are beyond their capabilities.

Should a crash occur, a pilot who survives the crash but does not have emergency or survival gear immediately accessible may not survive the harsh environment until rescuers are able to reach the location.

Through training, pilots can develop skills and techniques that will allow them to safely fly in mountainous terrain. Flight instructors should encourage their students to attend a quality mountain flying course before attempting flight in mountainous terrain or at high density altitudes. Pilots should consult with local flight instructors before planning a flight into mountainous terrain. Even experienced mountain pilots may not be familiar with local conditions and procedures for safe operations. Fixed base operator staff should be alert for customers who appear to be planning flight into mountainous terrain who could benefit from mountain flying instruction.

Pilots should be aware that weather interacting with mountainous terrain can cause dangerous wind, severe turbulence, and other conditions that may be unsafe for aircraft, especially light general aviation aircraft.

Pilots should consider specialized emergency and survival equipment (such as personal locator beacons in addition to a 406 megahertz emergency locator transmitter) before flying in mountainous terrain, and develop a plan for immediate access to the equipment in the event of a post-accident fire.

The NTSB presents this information to prevent recurrence of similar accidents. Note that this should not be considered guidance from the regulator, nor does this supersede existing FAA Regulations (FARs).

Administrative Information

<table>
<thead>
<tr>
<th>Investigator In Charge (IIC):</th>
<th>Adam M Gerhardt</th>
<th>Adopted Date:</th>
<th>06/20/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Participating Persons:</td>
<td>Keith Rittenberry; FAA; Boise, ID</td>
<td>Publish Date:</td>
<td>06/20/2017</td>
</tr>
<tr>
<td>Publish Date:</td>
<td>06/20/2017</td>
<td>Note:</td>
<td>This accident report documents the factual circumstances of this accident as described to the NTSB.</td>
</tr>
<tr>
<td>Investigation Docket:</td>
<td>http://dms.ntsb.gov/pubdmns/search/dockList.cfm?mKey=94912</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes:
SUMMARY

The period from 2016-2017

- GA accidents increased from 22 in 2016 to 29 in 2017
- Fatalities increased from 1 in 2016 to 3 in 2017
- Out of state pilots accounted for 67% of the total accidents
- Two of the 3 fatalities involved out-of-state pilots
- Pilot-related or error accounted for 89% of all the accidents
- Fifty-seven percent of accidents occurred during the landing phase
- There was one helicopter accident which occurred in hover phase
- Single-engine fixed-wing tailwheel aircraft were involved in 54% of the accidents
- Accident Pilot Profile Summary - The statistics point to a private pilot with less than 1000 hours, between the age of 61-70, flying a certified, single-engine fixed-wing aircraft, with tail wheel landing gear, occurring during the landing phase in VFR conditions in the backcountry and caused by pilot error.

The Idaho Division of Aeronautics continues to foster a culture of safety in the aviation community. We ask that you share this information with fellow aviators.

Our focus this year is on proficiency and getting back in the saddle with a focus on backcountry flying. Only you can take the necessary action to maintain proficiency and improve your knowledge, and skill. Decide today and make a commitment to become a better and safer pilot.