LESSONS LEARNED IN 20 YEARS FLYING THE IDAHO BACKCOUNTRY

Idaho Division of Aeronautics

2022 Safety Stand Down
Speaker: Jim Hudson
ABOUT YOUR PRESENTER
JIM HUDSON

AOPA 2018 Distinguished Flight Instructor
Flight Training Experience

Membership Director
T-Craft Aero Club - Nampa, ID

CFI / Backcountry Instructor
3,900 hours total
2,630 hrs. instructing
1,600 hrs. backcountry
ABOUT THIS PRESENTATION – TAKE AWAY’S

• Learn Something New.
• Available Resources
• Better Understand Density Altitude.
• Know Yourself & Your Aircraft’s Performance.
• Refresher on Take-Off/Landings
• Understand And Respect Mountain/Canyon Weather & Winds.
• Realize importance of getting Instruction
• Be Safe – Have Fun
AGENDA

• What’s different about the Backcountry.
• Resources.
• Preparation – Pre-Flight Considerations.
• Backcountry Weather.
• Rules of Thumb.
• Density Altitude / Performance.
• Flying the Backcountry.
• Emergencies / Survival.
• Comments, Q & A.
AWESOME RESOURCES

RAF – Recreational Aviation Foundation www.theraf.org
Idaho Aviation Association: www.idahoaviation.com
Amy Hoover: www.canyonflying.com – Mountain, Canyon & BC Flying Handbook
Fly Idaho- Guide Book: www.flyidaho.com
Sparky Imeson, Mountain Flying Bible: www.mountainflying.com
Idaho Division of Aeronautics: https://itd.idaho.gov/aero/
Lori MacNichol - Mountain Flying, LLC: www.mountaincanyonflying.com
Hump Day Hanger Presentations – Steve Johnson: www.supercub.org
www.backcountrypilot.org – good articles on survival
What’s different about the Backcountry?
“Mountains don’t need practice to bite you in the knickers”

John Goosstry Retired FAA Safety Program Manager, BOI FSDO
Mountain flying is very unforgiving
A very narrow margin for error!

MF Salmon – Impassible Canyon
Challenging strips; narrow, short, high elevation
Many are one way in – one way out.

Upper Loon Cr.
5500’ elevation
2510’ length
80’ width
The weather can change quickly in micro-systems in a small area.
Preparation – Pre-Flight Considerations
THE BASICS

- Know Yourself
- Know Your Aircraft
- Know The Environment
Know Yourself: Proficiency, Practice – Tune Up:

Load your Airplane to the Weight/CG you will be flying; at the anticipated DA.

- Be Proficient at Slow Flight / Stalls - In Level, Turning, Climb, Descent's.
- Set up approach, downwind, base, final in simulated canyon situation. Determine configurations, power and speeds.
- Calculate Maximum Performance Takeoff distance – Compared to Actual.
- Determine Rate of Climb. What do you get.
- Be Proficient at a Stabilized Approach and Short Field - Spot Landings.

Practice at local shorter strips: Murphy, Homedale, Emmett, Garden Valley.
• Runway slope?
• Taking off in a tailwind?
• Runway Surface: Grass, long grass, gravel, soft?
• Effect of Weight.

SPORTY’S T.O.C Not Available anymore
KNOW YOUR AIRCRAFT: AIRSPEEDS

At 8000 - 10,000 DA, determine Power (MP/RPM) setting with respective flap settings at Mountain flying air speeds:

Test altitude: _____ / DA______ Weight________

<table>
<thead>
<tr>
<th></th>
<th>Flaps</th>
<th>IAS</th>
<th>Pitch</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cruse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canyon Speed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow Cruse – 80/20 Set UP</td>
<td>20</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing – Downwind/descent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing - Final</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeoff Vx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeoff Vy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KNOW YOUR AIRCRAFT: STALL SPEEDS

At 8000 - 10,000 DA, determine Power (MP/RPM) setting at MCA and stall with flap configurations and weight you’ll be flying in the BC. Power to maintain level flight, except take-off and landing configurations.

<table>
<thead>
<tr>
<th>Test altitude:_____ / DA______</th>
<th>Weight________% Gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaps</td>
<td>MCA</td>
</tr>
<tr>
<td>MP/RPM</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>____</td>
</tr>
<tr>
<td>20</td>
<td>____</td>
</tr>
<tr>
<td>40</td>
<td>____</td>
</tr>
<tr>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>40</td>
<td>____</td>
</tr>
</tbody>
</table>
PREPARATION: IS YOUR AIRPLANE READY FOR THE BC

Landing Gear, Nose Gear, Tailwheel integrity

- Wheels and Brakes.
- Tire Condition.
- Wheel Fairings. (X)
- Fuselage and Interior.
- Lights.
- Windscreen.
- Seat Belts / Shoulder Harness
PREPARATION: IS YOUR AIRPLANE READY FOR THE BC

Powerplant / Prop

- Baffling, Cowling
- Hoses, Cables and controls.
- Filters
- Ignition system
- Battery & Cables
PREPARATION: OTHER THINGS TO BRING

- Oil, Windscreen Cleaner
- Tool Box, Duct Tape
- Pitot Cover, Gust Lock
- Tow Bar, Fire Extinguisher
- Tie down ropes/stakes
- Survival Gear / First Aid kit
- Adequate Clothing/Sleeping Bag
- Baggage Net
Know the Environment

- Preflight Prep – Much more extensive for backcountry.
- Routes and Outs.
- Approach and Departure
- Descent / Climb Gradients Required.
- Airport Research – Each Airport is Unique. Check PIREP’s,
- Expected Weather, NOTAM’s,
- TFR’s.
RAF / AOPA Air Safety Check List

OVERALL FLIGHT OBJECTIVES
- Flying to or from canyon strip, sightseeing enroute

MANDATORY EQUIPMENT
(Based on Objectives)
- Water, food, clothing, camping
- Tiedowns & control lock
- Personal Locator Beacon (PLB)
- Survival bag & vest with key items
- Aircraft maintenance grab bag
- Extra batteries for electronics
- Spare keys (aircraft, car)
- Medicine
- Firearms & bear spray (sealed container)

PLANNING

<table>
<thead>
<tr>
<th>AIRCRAFT PREFLIGHT</th>
<th>TAKEOFF</th>
<th>EN ROUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Parking area/conditions</td>
<td>- Runway conditions and slope</td>
<td>- Route of flight</td>
</tr>
<tr>
<td>- Walk taxiway and runway</td>
<td>- Wind</td>
<td>- Terrain elevation, notable peaks</td>
</tr>
<tr>
<td>- For objects/notes</td>
<td>- Obstructions</td>
<td>- Minimum obstruction clearance altitudes</td>
</tr>
<tr>
<td>- Determine usable runway length</td>
<td>- Takeoff direction</td>
<td>- Planned altitudes</td>
</tr>
<tr>
<td>- Determine climb performance & obstacles</td>
<td>- Traffic awareness and deconfliction</td>
<td>- Towers/hazards</td>
</tr>
<tr>
<td>- Consider topography and special departure route</td>
<td>- Type of takeoff (short, field, soft field, flaps, etc.)</td>
<td>- Expected fuel performance</td>
</tr>
</tbody>
</table>

WEATHER
- Departure, ceiling, visibility, temperature, winds, density altitude
- En route, ceiling, visibility, winds, turbulence, temp/dewpoint spread
- Arrival, ceiling, visibility, temperature, winds, density altitude

NOTAMS AND SUA
- TFIs
- Departure
- Enroute
- Arrival

START
- Be noise sensitive
- Prop wash awareness
- Radio frequency

TAXI
- Airfield review, runway, parking, taxi routes
- Hazard or soft areas, blind areas
- Traffic awareness (pattern, other taxiing aircraft)
- Wind indicators
- Taxi route
- Run-up areas
- Power/prop wash sensitive areas

CLIMBOUT AND DEPARTURE
- Expected climb performance
- Obstructions
- Climb altitude and special departure route before turning enroute
- Initial enroute heading and altitude
- Emergency options
- Be noise sensitive

TAKEOFF
- Runway conditions and slope
- Wind
- Obstructions
- Takeoff direction
- Traffic awareness and deconfliction
- Type of takeoff (short, field, field, flaps, etc.)
- Expected takeoff distance
- Takeoff abort point
- Abort actions

ARIVAL AIRFIELD REVIEW
- Prominent airfield landmarks (GPS coordinates?)
- Airfield layout, runway direction, slope
- Type of airfield and expected condition
- Location of wind indicators
- Obstacles
- Nearby terrain
- Unusual wind patterns or terrain impact on winds
- Visual illusions
- Frequencies
- Traffic awareness and deconfliction
- Potential areas short/long of runway if needed

NOTES:

<table>
<thead>
<tr>
<th>Field Area for Knowledge Share</th>
</tr>
</thead>
</table>

1 of 3 2 of 3
AIRFIELD ASSESSMENT
PROCEDURE
- Announce arrival
- Standard is left-hand pattern unless overflying camping; sensitive areas. Pattern may be dictated by topography, obstructions
- Fly overhead, 300 ft above pattern altitude, midfield, perpendicular to runway, if able. (If not, fly straight down runway at pattern altitude)
- Standard pattern altitude is 1000 ft AGL
- Descend to pattern altitude on upwind; fly crosswind, then downwind
- Assess:
 - Runway condition
 - Slope
 - Wind indicators
 - Obstructions
 - Emergency areas (short/long of runway)
 - Other traffic in area or on ground
 - Go-around areas and flight path
 - Taxi and parking areas

LANDING
- Runway direction
- Type of landing (shortfield, over obstacle, etc.)
- Expected weight and pattern speeds
- Expected landing distance
- Go-around decision point
- Emergency options

TAXI IN
- Route
- Direction
- Hazards
- Prop wash - sensitive areas and camp sites

PARKING
- Area
- Hazards
- Sun and wind impact

SHUT DOWN
- Master Off
- Close flight plan
- Notify friends/family
- Tie down

Safety Briefing Guide

Developed In Partnership With

© 2018, AOPA Air Safety Institute and Recreational Aviation Foundation.
Cover Photo: RAF supporter Pat Knowles departs Dixie, Idaho in his C-182; photo by Joan Caswell

3 of 3
Route planning

Terrain?

Fuel?

Alternates?

Outs?
Route planning

Route planning

Terrain?

Fuel?

Alternates?

Outs?
PREPARATION: ENVIRONMENT: AIRSTRIP RESEARCH

- Sectional Charts.
- Div. of Aero Airport Fac. Dir. Airport Operating Procedures
- Fly Idaho Book
- I.A.A. Website
- RAF Airport Guide
- None are a substitute for BC Training.
Idaho Division of Aeronautics Airport Facility Guide
Free App: Idaho Airports

Disclaimer
About Us
ELT Procedures
Crosswind Component Chart
KOCH Chart
Search and Rescue Procedures
Mountain Flying Tips
Airports - Amenities / Activities
High Altitude Frequencies
Flight Plan
In-Flight Intercept Procedures
KNOW THE ENVIRONMENT

Standard Operating Procedures for some of the State owned and operated airstrips.

: http://www.itd.idaho.gov/aero - Publications

ASSESSING A STRIP - DETAILS

- Approach, “Pattern”, Landing Spot
- Abort / Go Around Locations
- Runway Surface / Condition
- Taxi Way, Tie – Downs, Camping Areas
- Departure – Route, Obstacles, Climb Out Requirements
- Abort Points – Emergency Landing Spots
- Youtube – Good, Bad, And Ugly.
- Other Pilots Who Have Been There.
- Get Instruction.
B.C. Weather
PREPARATION: WEATHER SOURCES

- **ASOS / METAR’S / TAF** — May not be close. Will not forecast fog, valley fog, squalls, canyon turbulence.
- **Cell Coverage**
 - Surprisingly, some at higher altitudes ~ 9-10K’
 - Not in canyons
- **Internet:** Web Cams. / BC WX /RAW’s (remote automated WX)
- **1800wxbrief.com, ForeFlight, Windy, Aviationweather.gov**
- **In Flight**
 - ADS-B (in) FIS-B – ground based
 - Sirius XM WX – Satellite based.
You can’t beat the weather.
The deck is stacked, mother nature routinely cheats and always wins.

RK "Dick Williams"
Valley / Canyon Morning Fog
Over or Under?
Fire, Smoke, Always a Threat
Check TFR’s
R.K. "Dick" Williams Rule: "The Wind Doesn't Blow – It Sucks"
Mountain
Strongest wind speed and turbulence on downwind side, also warm and dry

Air flow over mountains
Orographic cloud and possible IMC conditions on upwind side

Downdraft

Downwind

Airflow

Upwind

25 KT

Desired flight path

Actual flight path

> 2000 FPM
With a very strong wind, solar lift interacts chaotically with orographic effects, creating turbulence and unpredictable winds throughout the canyon.

With a stronger wind, rising air from solar lift creates a cushion of air in the canyon bottom. There is lift low in the canyon, but turbulence near the ridge tops.
Mechanical Turbulence
Diurnal Effect, Venturi, and Convergence
• Takeoff into wind may produce rapid initial climb out, but leave you climbing into downdrafts.
• May have to take off with a tailwind. Will degrade takeoff and climb out performance, but may allow you to climb into updrafts as you cross canyon.
Lenticular Clouds
Mountain Waves
Reno
WEATHER AND PERFORMANCE

• Be Respectful Of The Weather.
• It’s Ok To Be Chicken - Better Than A Dead Duck.
• Don’t Scud Run In The Mountains!
• If There’s Any Doubt, There Is Not Doubt, Wait It Out.
• Always Give Yourself An...out!
Amy Hoover – Weather Presentation

Canyonflying.com
Supercub.org Hanger Hump Day Presentation- Weather
https://www.youtube.com/watch?v=AG0dwOCNaE8
REMEMBER

WIND, HEAT and TURBULENCE ARE OUT TO GET YOU
RULES OF THUMB FOR THE BACKCOUNTRY

• Do not fly in the Mountains with winds aloft in excess of 25 Knots - less with less experience.
• In general, plan to arrive / depart by 10 AM or late evening when wind calms down and temperature is cooler.
• Always have an OUT
 o Be able to turn to lowering terrain.
 o WX or Emergencies - Always have a landing area in mind
 o Be able to turn 180 in Canyons; ½ Canyon width.
• 80/20 Rule – 80 Knots / 20deg Flaps (C206/C182) – when things get tense or need to slow down.

WIND, HEAT and TURBULENCE ARE OUT TO GET YOU
WIND, HEAT and TURBULENCE ARE OUT TO GET YOU

RULES OF THUMB FOR THE BACKCOUNTRY

• 50% Take-Off Rule - if not at 71% rotate IAS at 50% of runway length - ABORT. (conservatively 75% x 50kts = 37.5 round to 40kts)
• Approach ridges at 45° angle before crossing, at least 2,000’ in turbulence.
• Fly over the mountains 1,500 – 2,000 AGL.
• In Canyons – Convention Fly the right side (unless in downdrafts Canyon speed – low noise impact.
• Land Up River – Take Off Down River.
• Communicate your position frequently on 122.9

WIND, HEAT and TURBULENCE ARE OUT TO GET YOU
Know Your Aircraft’s Performance
Density Altitude
DENSITY ALTITUDE

- Insidious, easy to overlook
- High DA is a factor in many accidents
- Especially in the backcountry
- Mixture
 - Lean for takeoff and landing
At A Given GW, High DA Means:

1. Reduction in engine horsepower (loss of prop efficiency, lift)
2. Longer takeoff and landing rolls
3. Decreased climb performance
4. True Airspeed Increases
A normally aspirated engine loses approximately 3% hp per 1000 ft increase in DA. A 230 hp C182 at 6000 ft DA would produce approximately 188 hp. At 9,000 ft DA ~ 170 hp. This does not account for loss of propeller efficiency, and loss of lift.
True Airspeed increases approximately 2% per 1000 ft increase in DA. Turn Radius increases ~ 5%
Each 1000 foot increase in DA will increase landing distance about 4%
Each 1000 foot increase in DA will increase takeoff distance by:

<table>
<thead>
<tr>
<th>Type</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Pitch</td>
<td>8.5%</td>
</tr>
<tr>
<td>Constant speed</td>
<td>8.0%</td>
</tr>
<tr>
<td>Constant speed/turbo</td>
<td>7.0%</td>
</tr>
</tbody>
</table>
DENSITY ALTITUDE - ASI

Air Safety Institute
https://www.youtube.com/watch?v=5yFIRHvoy4k
DENSITY ALTITUDE ACCIDENTS: BRUCE MEADOWS, ID

Example of not knowing Self / Aircraft / Limitations and/or Complacency

Excerpt from NTSB Report: On June 30, 2012, about 2:05 PM Mt DT, a 165 HP/2400# GW Stinson 108-3, was substantially damaged after impacting terrain during initial climb near the Bruce Meadows Airport (U63). The certified commercial pilot sustained serious injuries, and the three passengers sustained minor injuries.

MYL ASOS at 19:51Z 1608KT 27(81F) A3000

U63 is 6370’, DA = 9,050’ @ 165HP=120hp!!
Probable Cause and Findings
The National Transportation Safety Board determines the probable cause(s) of this accident to be: The pilot’s inadequate preflight planning and decision to takeoff at a density altitude outside of the airplane’s takeoff performance envelope, with a 10 Knt tailwind, and near (86# under) the airplane’s maximum gross weight of 2400#, which resulted in the airplane’s inability to climb and clear trees.
ANALYSIS

• What could he have done different?
 o Before taking off?
 o While taking off?
 o In the air?

• What did he do right?

• Lessons learned?
Take-Off’s
TAKEOFF PREPARATION

• Know you can takeoff before you land.
• Departure route?
• Abort Plan?
• Obstacles / Climb rate required?
• POH procedures
 o Short/soft take off
 o Lean for Max Performance
TAKEOFF PREPARATION

• Taxi - Walk It! – check for rocks, chuck-holes, dips, etc.

• Temp, winds - Take Off / Climb calculations.

• Locate 50% runway length mark and know 71% Vr.

• Mixture – SET (typically no run up), set on back taxi.

• Flaps at POH short/soft setting.

• Pre-Take Off Brief - route, abort plan, obstacles.

• Tailwind – Best to wait!
DEPARTING THOMAS CR. 4415', 2100' - MF SALMON

- McCall
- Thomas Cr.
- Indian Cr.
- Sulphur Cr.
- Bruce Meadows
- Boise
Interesting Take-Off’s
SULFUR CREEK RANCH
5835’ elevation
3300’ x 40’

Land to the west;
take off to the east

....if there is a tail wind...?
TAKING OFF sulfur CR. (5835' Elv. x 3300')

Hi DA 8,000' & TAILWIND
Do not let yourself be forced into doing anything before you are ready. — Wilbur Wright
C182 - Overloaded - tailwind - take off stall
Probable Cause and Findings C182
The National Transportation Safety Board determines the probable cause(s) of this accident to be: The pilot's inadequate decision and his improper setting of the propeller controls. Contributing factors were a tailwind, high density altitude, and swampy terrain.
Terrain / Canyon Flying
FLYING YOUR ROUTE: BACKCOUNTRY NAVIGATION

- Know your location – all times
 - Drainages look the same.
 - GPS – Terrain feature.
- Charts may not be enough
 - Other resources?
 - Topo maps
 - USFS Maps
- Big water vs little water
 - Big road vs little road?
GPS, TERRAIN CAN PROVIDE ENHANCED SIT. AWARENESS
Which side?
Maneuvering in Terrain

Tendency to pitch up in rising terrain to follow the slope.

Raising Nose - airspeed slows, can cause a stall.

Tendency to pitch down in lowering terrain to follow the slope

Lowering Nose – increases ground speed and the turn radius - eating into our margin
When you need an OUT – Slow Down 80/20

- Weather ahead, clouds, rain, poor visibility, etc.
- Sun in your eyes, “black hole” effect
- Turbulence is present, up and down drafts
- A Ridge Crossing is approaching
- You are not familiar with the area
CANYON FLYING – WHICH WAY TO GO

Where is my out?

My Out is…

Always keep an Out!!!
CANYON TURN

120 Knots – 30 Degree Bank

80 kt – 30 Bank

80 kt – 45 Bank
Approach / Landing
Landings are like farts. If you have to force one it is probably crap.
Flying is the 2nd greatest thrill known to man. Landing is the 1st.

Sign at Sulphur Cr. Lodge
APPROACH

- SLOW down before approaching/entering pattern. (V80/20)
- Determine the abort / go-around point.
- Locate approach and departure paths and abort points.
- Locate Emergency landing spots.
- Determine Wind, gradient, surrounding terrain, obstacles.
- Animals/equipment/human activity, other aircraft.
- Possibly make a low pass to assess surface conditions and hazards.
LANDINGS

- Stable – Constant airspeed - Power on approach.
- Pitch for Speed
- Power for Climb/Decent Rate
- Every airfield needs precise landing spot.
- Spot landings to the target spot.
- Keep centered.
- Taxi with caution.

Stable – Constant airspeed - Power on approach.
Flying B Ranch

3647’ elevation
2240’ length
Abort plan:
Select an altitude/location in the approach which is a HARD “no-go-around” point.
After that point – you are committed to land.
Landing Accidents
Sulphur Cr. 8/5/2002
P210 - Too Low Approach – “Sinking Air”
C210 – Landed Way to short – Bad Air?
Maybe power off – in sinking air?
Probable Cause and Findings C210

The National Transportation Safety Board determines the probable cause(s) of this accident to be: The pilot's failure to maintain the proper rate of descent on short final resulting in a touchdown short of the runway threshold. Contributing factors were the variable winds and swampy terrain at the touchdown site.
Sulphur Cr. Landing/Taxi went awry
6/2011
Sulphur Cr
Short field take-off
DANGERS OF A GO-AROUND

• What it means to fly past the abort
 o Don’t try to do a go around
 o Lots of GA accidents on a go-around attempt – not just BC
Flying B Ranch

3647’ elevation
2240’ length

© Galen L Hanselman
All rights reserved.
galen@flyidaho.com
DANGERS OF A No GO-AROUND

AOPA Air Safety – Flying in the Mountains
Real Pilot Story

https://youtu.be/NGt6TmkYdUw
Emergencies / Survival
IN FLIGHT EMERGENCIES

• Loss of Engine - Always have an OUT
 o Standard Procedure – Best Glide
 o Have an emergency landing area in mind
 o Always be able to turn to lowering terrain.
 o Go for smaller trees – higher up

• Don’t stall – No matter what – Don’t stall

• Stay with the aircraft!

• Deteriorating weather
 o Turn back or find a place to land while you still can.
Be prepared – Post crash survival – “Luck Favors the Prepared”

You may have only what you are wearing to survive after a crash.

In the airplane
• Took kit
• Camping gear
PREPARATION: SURVIVAL KIT / FIRST AID

- Survival kit is what you wear.
- First aid – Know how to perform.
- Dress appropriately or have warm clothes.
- Survival Skills.
- Consider Wilderness/First Aid Medicine Training
PREPARATION: SURVIVAL VEST ITEMS

• First Aid
• Fire Starter
• Shelter (heavy duty bag)
• Signaling devices
• Water - Food
• Paracord/Tourniquet
• Compass
• Survival Knife
• Wool Hat (with sewing needle)
DISPATCH WITH SOMEONE (FAA flight plan may not be possible)

Use a satellite tracking/communications device

PLB – Personal Locator Beacon (406 MHz)
ABOUT THIS PRESENTATION – TAKE AWAY’S

• Learn Something New.
• Available Resources
• Better Understand Density Altitude.
• Know Yourself & Your Aircraft’s Performance.
• Refresher on Take-Off/Landings
• Understand And Respect Mountain/Canyon Weather & Winds.
• Realize importance of getting Instruction
• Be Safe – Have Fun
Thank You
Be Safe,
Have Fun,
Don’t Do Anything Stupid!
Questions,

Comments?

Did you learn some things?
Think you’ll be a safer pilot?
Learn some things you’ll try?
Did you have fun?